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Abstract—Just as the brain must infer 3D structure from 2D
retinal images, radiologists are tasked with inferring 3D densities
from 2D X-rays. Computer simulations suggest that V1 simple
cells use lateral inhibition to generate sparse representations
that are selective for 3D depth when presented with 2D stereo
images and video. Analogously, we cast radiographic inference
as a sparse coding problem employing lateral inhibition between
binary neurons, resulting in a quadratic unconstrained binary
optimization (QUBO) problem suitable for implementation on
a quantum annealing D-Wave 2X (1152-qubit) computer. We
generated synthetic radiographs by performing discrete Abel
transforms on mathematically-defined objects possessing axial
(cylindrical) symmetry and whose radially density profile was
given by the sum of a randomly-chosen, sparse set of (nearly
binary) Fourier components. We used embedding tools to map the
above QUBO problem, which involved dense connections between
up to 47 Fourier coefficients, onto the very sparsely connected
D-Wave chimera. Using quantum inference, we were able to
reconstruct reasonably accurate radial density profiles even after
adding sufficiently noise to our synthetic radiographs to make
inverse Abel transforms untenable. Compared to state-of-the-art
classical QUBO solvers, GUROBI and the Hamze-Freitas-Selby
algorithm, the quantum D-Wave 2X was orders of magnitude
faster for the same final accuracy. Our results indicate a potential
strategy for integrating neuromorphic and quantum computing
techniques.

Index Terms—Sparse coding, Lateral inhibition, Compressive
sensing, Radiographs, NP-hard, Quantum D-Wave 2X machine,
Quantum annealing

I. INTRODUCTION

Inferring 3D depth from 2D retinal images is a fundamental
task of the visual cortex. Computer simulations suggest that
unsupervised training of a model of V1 simple cells in an
manner designed to optimize the sparse reconstruction of 2D
stereo images or video naturally supports the acquisition of 3D
depth-selective responses [1], [2]. In these studies, models of
V1 simple cross were implemented using a locally competitive
algorithm (LCA), a neurally plausible mechanism for inferring
sparse representations based on lateral inhibition between
leaky-integrator neurons governed by a soft-threshold transfer
function [3]. Based on their somewhat analogous architectures,
we postulated that a version of LCA could be efficiently

implemented on the D-Wave 2X quantum annealing computer.
As a more tractable problem suited for the limited size of the
D-Wave 2X, we considered the inference of 3D density profiles
from synthetically generated 2D radiographs of mathemati-
cally defined objects. When sufficient noise is added to the
synthetic radiographic images, density reconstructions based
on direct inverse transform methods become wildly inaccurate.
In contrast, we found that implementing a model of binary V1
simple cells on the D-Wave 2X allowed us to infer accurate
radial density profiles even in the presence of similar noise
levels. Our results suggest a general contractor strategy for
synthesizing neuromorphic and quantum techniques.

II. NEUROMORPHIC APPROACH

A. Sparse representations

The hypothesis that neurons encode stimuli by inferring
sparse representations explains many of the response prop-
erties of simple cells in the mammalian primary visual cortex
[4], [5]. Given an overcomplete, non-orthonormal basis {φi},
inferring a sparse representation involves finding the minimal
set of non-zero activation coefficients a that accurately recon-
struct a given input signal I , corresponding to a minimum of
the following energy function:

E(I,φ,a) = min
{a}

[
1

2
||I − φa||2 + λ||a||0 ] (1)

where λ is a trade-off parameter that determines the balance
between reconstruction error and the number of non-zero
activation coefficients. A larger λ serving as a higher threshold
will result in a more sparse representation solution to problem
Eq. (1). This energy function is non-convex and contains
multiple local minima, so that finding a sparse representation
falls into an NP-hard complexity class of decision problems
[6].

B. Lateral inhibition

Previous work [3] has shown that sparse coding opti-
mization problems can be solved using the dynamics of
neural networks incorporating lateral inhibition, a biologically



plausible implementation of a sparse solver referred to as an
locally competitive algorithm, LCA. LCA can be summarized
by the following elements. The output or firing rate of a
neuron is given by a threshold or activation function of its
membrane potential. The output of each neuron (usually zero)
corresponds to the activation coefficient of its associated basis
vector. The input to each neuron is given the inner product
of its feature vector with the stimulus. The magnitude of the
lateral inhibition between any pair of neurons is determined by
the inner product of their corresponding basis vectors. A sparse
solution is found by allowing the resulting dynamical system
to evolve to a minimum energy configuration. However, such
dynamical systems are susceptible local minima. Here, we use
quantum annealing to explore the global energy landscape.
In qualitative terms, we associate the input to each binary
all-or-none neuron to the bias or external field applied to
each spin or qubit and the lateral inhibition between neurons
with the spin-spin coupling between superconducting qubits
inside the quantum D-Wave machine hardware [7]. An optimal
solution to the sparse coding problem is then determined by
the configuration of spin orientations that minimize the total
energy to the associated Ising system.

III. MAPPING SPARSE CODING ONTO QUBO D-WAWE 2X

A. Lateral inhibition neurons versus quantum bits: transfor-
mation relations

We investigate the application of quantum annealing to
the solution of sparse coding quadratic unconstrained binary
optimization (QUBO) problems employing binary activation
coefficients that arise in the context of sparse coding. Each
neuron is mapped to a qubit in the Chimera hardware and
because a qubit is assigned only two possibilities 0 and 1
(or equivalently in an Ising problem, −1 and 1 for spin
orientation) the neuron in our case is treated as a “quantum
object” bearing two possibilities: firing with maximum activa-
tion with coefficient 1 and silent with coefficient 0. Because
each neuron is a quantum object, the state of any neuron
is described in general by a superposition of 1 and 0, in
which the neuron is both active and non-active at the same
time, a logical impossibility for any classical system. It is this
quantum superposition that allows the D-Wave to explore the
entire energy landscape at once.

The D-Wave 2X [7] finds optimal solutions to a (discrete)
Ising system consisting of Nq binary variables via quantum
annealing. Such Nq−body systems can be described by the
following classical Hamiltonian:

H(h,Q,a) =

Nq∑
i

hiai +

Nq∑
i<j

Qijaiaj (2)

with binary activation coefficients ai = {0, 1} ∀i ∈
(1, 2, 3, ..., Nq). This objective function defines a QUBO prob-

Fig. 1: (Color online) A subset of the Chimera D-Wave
consisting of 32 qubits arranged in the form of 2x2x8 in which
8 qubits in each of the 4 unit cells plotted here 1) are grouped
into two arrangements of vertical (horizontal) orientations as
blue (white) circles and 2) interact with one another through
the 16 bipartite interactions (blue edges). Nearest neighboring
bipartite interactions between each pair of nearest neighboring
unit cells are characterized as black and red edges.

lem. We cast our sparse coding problem, Eq. (1), into QUBO
form, Eq. (2), by the transformations [8]:

hi = (−φT I + (λ+
1

2
))i,

Qij = (φTφ)ij . (3)

In Eq. (3), the bias term h (elements hi) in the Ising model
is proportional to the weighted input φT I while the coupling
term Q (elements Qij) corresponds to lateral competition (see
also [3]) between qubits given by the interaction matrix φTφ
[with self-interaction excluded and Q being symmetric i.e.
Qij = Qji ∀i 6= j, see Eq. (2)].

B. D-Wave 2X hardware

The D-Wave 2X [7] consists of 1152 qubits arranged into
12x12 unit cells, forming a Chimera structure with dimensions
12x12x8. Sparse interactions between qubits are restricted to
the 16 connections within a unit cell and the 16 connections
between nearest-neighboring unit cells [7].

In detail, each unit cell contains 4 qubits aligned along a
horizontal axis and 4 qubits aligned vertically (see Fig. 1).
Within a unit cell, the 4 qubits of a given orientation can only
can interact with the 4 qubits with the opposite orientation (e.g.
see the two groups of white and blue filled circles represented
as qubits with different geometries in Fig. 1). Between unit
cells, interactions are only allowed between nearest-neighbors
(blue edges) and even between nearest-neighbors the allowed
connections are restricted according to relative orientation.
A vertically (horizontally) oriented qubit can only connect
to the two vertically (horizontally) oriented qubits at the
same relative position in the nearest-neighboring unit cells
immediately above (left) and below (right) along one column
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Fig. 2: (Color online) An illustrating example for mapping
a 5 fully-connected particles (left, 5 red filled circles with
10 black edges) onto a part of the Chimera hardware using 8
qubits (right, 8 blue circles) with all eligible connections (blue
edges).

of the 12x12 grid [see black (red) edges in Fig. 1]. Thereby,
in a chimera graph, one qubit can interact with at most 6 other
qubits.

Embedding technique
Despite the sparsity of physical connections on the D-Wave,
it is nonetheless possible to construct graphs with arbitrarily
dense connectivity by employing “embedding” techniques.
Embedding works by chaining together physical qubits so as to
extend the effective connectivity but at the cost of reducing the
total number of available logical qubits. Because logical qubits
do not need to follow the connection rules that physical qubits
do, it is possible to implement general QUBO problems with
arbitrarily dense connectivity on the sparsely connected D-
Wave chimera. The D-Wave API provides a heuristic algorithm
that searches for an optimal embedding that minimizes the
number of physical qubits that are chained together.

For illustration purposes, we plotted in Fig. 2 a cartoon
describing a simple embedding example mapping a fully-
connected problem containing Nq = 5 “logical” qubits
(red circles) interacting via 10 bipartite couplings (10 black
edges) to a Chimera graphed problem. The corresponding
embedded output solution, shown on the right-hand-side of
Fig. 2, is a subgraph consisting of 8 “physical” qubits (blue
circles), numbered from 1 to 5 denoting the corresponding
5 “logical” qubits. Some physical qubits are tied together by
strong negative couplings to create and effective logical qubit
with greater connectivity. Note that this embedding is not
unique. As the number of constructing particles Nq increases
(20 < Nq ≤ 47 as studied in the remaining part of the paper),
each “logical” qubit now can interact with a much denser
number of neighboring qubits, which results in a much more
sophisticated embedding solution.

The exact mapping of a spin glass problem onto the physical
D-Wave 2X chimera, including defects, can typically contain
approximately Nq ∼ 1000 spins (qubits) with > 3000 local
spin-spin interactions. In contrast, embedding an arbitrary
QUBO problem onto the same 2X chimera typically allows
no more than Nq ∼ 47 nodes (logical qubits) but these nodes
may be fully connected. Thus, embedding effectively trades
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Fig. 3: (Color online) A cross-section cartoon describing how
the Abel integral is formed. A set of parallel beams (blue
arrows) passes through an axially-symmetric object, forming
a radiographic projection I that varies along the y-axis.

qubits for connectivity.

IV. RADIOGRAPHIC INFERENCE ON THE D-WAVE

A. Compressive sensing formalism

Compressive sensing [9], [10] seeks to accurately recon-
struct a compressible signal f of dimension Nx1 using a
(much) smaller number of measurements M compared to
the dimensionality of the original signal (M ≤ N ). The
assumption of compressibility can be formulated as:

I = Af . (4)

Here, A, of dimension MxN , is called the sensing matrix for
measurement I of dimension Mx1. The reconstruction I of
signal f is accurate when f is known to be sparse in some
basis F such that f = Fa then we can rewrite:

I = φa (5)

with
φ = AF . (6)

Thus, to infer a radial density profile, we seek a sparse
representation a for signal f that recovers the measurement
I . In particular, we minimize an energy function of the sparse
code form with sparse basis φ. If the activation coefficients a
are assumed to be binary, we have cast radiographic inference
as a QUBO problem that can be solved on a quantum D-Wave
2X machine using embedding techniques. A more complete
discussion on compressive sensing is specialized in [9], [10].

B. Abel transformation

Assume that an object possesses axial symmetry (e.g. a
cylinder with radius R) and a radial density dependence given
by f ≡ f(−→r ) with −→r denoting radial position. The Abel
transform [11] yields the log of a radiographic projection
where a set of parallel beams (blue arrows in Fig. 3) passes
through an axially-symmetric object forming a radiographic



image projection I that varies along the y-axis. Formally, we
write:

I = Af (7)

where operator A now represents an Abel transformation. For
implementation on the D-Wave, we cast A as a matrix of
dimension MxN obtained by discretizing the Abel transform
as:

Aij = 2
∑
j

rj∆ij√
r2j − y2i

(8)

where i = 1, 2, ...,M , j = 1, 2, ..., N , ∆ij is the discretized
integration step size and the upper limit corresponds to yM =
rN = R.

C. Input for D-Wave 2X

We still need to identify a basis in which the radial density
function f is sparse. Here, we assume that the synthetic radial
density profile f is sparse in a Fourier domain. In general,
f(−→r ) can be expanded as a discrete Fourier series Fn:

f(rj) =

Nq∑
n

anFn(rj) (9)

where the Fn(rj) are discrete cosine functions forming Fourier
matrix F of dimension NxNq . The Fourier coefficient vector
a is synthesized such that 1) a is sparse; most of the Fourier
coefficients an in a are zero and 2) f = Fa.

We now can now rewrite

I = AFa = φa, (10)

with φ now defined as

φ = AF, (11)

in the form of a sparse coding compressive sensing repre-
sentation [9], [10]. Note that φ, in this case defined via
Eqs. (8) and (9), which is equivalent to the representation
φ in Eq. (6), can be interpreted as “dictionary” for a sparse
coding implementation. The sparse set of Fourier coefficients
a can then be determined by minimizing the objective function
||I −φa||2 + λ||a||0 [defined as in Eq. (1)]. The size of a is
limited by the capacity of the D-Wave 2X, which in the case of
embedding a fully connected graph is Nq = 47. In the current
context, the Hamiltonian parameters h and Q defined above
in Eq. (3), respectively, become: h ∼ −φT I ∼ −(AF )T I
and Q ∼ φTφ ∼ (AF )T (AF ).

V. EVALUATING PERFORMANCE OF THE QUANTUM
D-WAVE 2X VERSUS THE STATE-OF-THE-ART CLASSICAL

SOLVER GUROBI

We use the following solvers/algorithms to find solutions
to our QUBO problem: the D-Wave 2X, GUROBI, an exact
classical solver, and Abel inversion, which applies to continu-
ous variables. During the cooling process, approximately 4.5%
(for the current D-Wave 2X hardware we used) of the physical
qubits become unusable. The D-Wave 2X at Los Alamos
National Laboratory on which these runs were performed had

1100 active qubits with 3068 active couplers. Fig. 4a shows the
radial density profile obtained from the quantum D-Wave 2X
machine. We used λ = 23 for Nq = 47 nodes. The synthesized
density profile is relatively well reconstructed and all non-zero
Fourier coefficients were retrieved.

Adding noise to the synthetic radiograph did not affect the
density reconstruction (red and dashed lines coincided) and all
non-zero Fourier coefficients were again retrieved. In contrast,
the density profiles produced by the inverse Abel transform,
although exact in the noiseless case (not shown), were severely
impacted by the addition of noise (Fig. 4b).

GUROBI [12], a commercial optimization tool, yields exact
solutions to general QUBO problems. The D-Wave 2X was
able to find all non-zero Fourier coefficients within a minute,
including the time for all processing steps, such as i/o,
embedding, annealing, reading, etc. When applied to same
radiographic-inspired QUBO using e.g. Nq = 47 nodes,
however, GUROBI required several hours to converge and in
some cases was unable to obtain the exact solution before a
10 hour cutoff was imposed.

We have so far examined the cases Nq = 47, the maximum
number of logical qubits we could embed on the quantum D-
Wave 2X hardware. Finding a global minimum to our densely
connected QUBO problem should become more difficult as Nq

becomes larger, since the number of possible combinations of
Fourier coefficients that can reproduce the synthetic radiograph
grows combinatorially. In this section, we study a range of
Nq = 21, 25, 30, ..., 37 (Fig. 5) with λ slightly increasing as
Nq increases to maintain a similar sparsity scaled to Nq . Below
approximately Nq = 40, GUROBI is able to find an optimal
solution within a tractable amount of time. However, above
approximately Nq = 40, GUROBI can no longer find a global
minimum within the 10 hour cutoff imposed for this study.
For values of Nq ranging between Nq = 21 to Nq = 37,
runtime grew exponentially as a function of Nq . A linear fit
(red dashed line in Fig. 5) yielded a slope of ∼ 0.27, which
is close to log10 2, as expected for an exact but exhaustive
combinatorial search.

VI. OTHER COMPARISONS

A. Abel inversion

Abel inversion has been known to recover signals in the
absence of noise. We observed that Abel inversion produced an
absolute squared error ∆f = ||f−Fa||2 � 0.1. The absolute
error rate for the D-Wave 2X is around 0.54 [see Fig. 4(b)].
Thus, Abel inversion is much more precise than the D-Wave
2X in the absence of noise. Note that the quantum D-Wave
solver is binary while standard Abel inversion gives an exact
continuous solution. However, when approximately 20% white
noise is added to both the radiographic projection I and to the
original synthesized radial density profile f , the inverse Abel
transform performs poorly. While the Abel inversion is very
sensitive to noise, we found that the D-Wave is robust to noise
below about < 25% of the signal.
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Fig. 4: (Color online) (a): Radial density solutions. Solid lines refer to the true radial density (blue) and D-Wave reconstructed
radial density (red). Dashed line refers to the reconstructed radial density in the presence of noise. (b): Radial density obtained
using Abel inversion. Blue line refers to the original radial density and red the reconstructed radial density in the presence of
noise.
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Fig. 5: (Color online) Time for GUROBI to obtain an exact
solution of a densely connected QUBO problem as a function
of Nq , the total number of possible Fourier coefficients. Time
axis in log base 10.

B. Performance with the Chimera-inspired solver Hamze-
Freitas-Selby (HFS)

Lastly, we compare the D-Wave 2X to the classical Hamze-
Freitas-Selby algorithm (HFS) [13], [14]. HFS is a QUBO
solver implemented by Selby [15] that uses the D-Wave
Chimera structure to successfully solve spin-glass problems.
In HFS, low-bandwidth graphs are used instead of individual
spin-flips to search for optimum solutions among all possible
configurations.

Previous work has shown that HFS performs well compared
to the D-Wave on spin-glass problems when the number
of qubits is limited [15]. We used the concept of time to
solution, the main runtime measure for HFS, which in a D-
Wave machine is defined as the ratio of annealing time and

probability to be the optimum solution. Annealing time for
the quantum D-Wave 2X hardware we used is ∼ 20µs. We
report that for this problem type, time to solution in the D-
Wave 2X is a few hundreds times faster on average than that
for HFS. The time to solution of one of our inputs using
the best combination of HFS parameters we found (we tried
many different combinations) for this case was about ∼ 0.8
seconds (equivalently ∼ 0.8 106µs) while time to solution
was around < 103µs on D-Wave 2X. Note that this time-
to-solution measure is not the wall-clock time as was used for
the comparisons with GUROBI in the previous section. For
example, in this case, it took about 6 minutes for HFS to yield
its optimum solution according to the wall-clock time while
it was about less than 1 second for D-Wave 2X, respectively.
We performed our work on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30GHz.

VII. CONCLUSION

Radiographic inference is an important technique for re-
motely interrogating both static and dynamic physical objects.
Because a single radiograph can only yield a single cross-
section, inferring the corresponding 3D structure is in general a
difficult, ill-posed inference problem. However, this inference
problem can be rendered more tractable to the extent that prior
information about the physical objects being imaged can be
brought to bear. For example, an Inverse Abel transform uti-
lizes the prior information that the underlying objects possess
cylindrical symmetry. Here, we incorporate prior information
using a sparse coding framework, which involves finding a
basis in which the 3D structure of the underlying objects can
be recovered in terms of a small number of basis coefficients.
In general, if a sufficient number of training examples span-
ning the range of possible physical realizations are available,
such a basis can always be found using standard dictionary
learning techniques. Here, as an expedient, we defined radially



symmetric objects that were constructed to be sparse in a
Fourier domain. However, the underlying principle should
extend to the interpretation of radiographs of any set of objects
that can be sparsely represented in some basis.

We used a biologically plausible approach to sparse cod-
ing based on lateral inhibition to infer radial densities from
radiographic projections. By employing binary neurons, we
mapped the radiographic inference problem to a QUBO
problem, a format that allowed direct implementation on
the D-Wave quantum annealing computer. We used quantum
annealing to explore the global energy landscape of a 47-
neuron systems governed by lateral competition to search
for a minimal sparse representation of firing neurons that
best reconstruct our synthesized radial density profile input.
We compared the performance of the quantum annealing D-
Wave 2X computer on a densely connected QUBO problem
against several classical approaches (GUROBI, Abel inversion,
HFS). Previous comparisons of D-Wave quantum annealing
computers against classical algorithms focused on spin-glass
problems mapped directly onto the sparsely connected D-Wave
chimera. We found that the D-Wave 2X hardware dramatically
outperforms GUROBI for these densely connected QUBO
problems, obtaining solutions within one minute on problems
that GUROBI was unable to solve in under the 10 hour
cutoff imposed for this study. As a function of the number
of binary coefficients Nq from which the solver much chose,
the D-Wave 2X exhibited clear superiority over GUROBI for
approximately Nq ≥ 37. We also made a comparison for
our results with a Chimera-inspired solver HFS. Again, the
D-Wave 2X outperformed HFS considerably, being approxi-
mately 100 times faster than HFS for this problem. We showed
that the D-Wave 2X is able to filter white noise added to
the synthetic radiograph whereas the same added noise levels
causes Abel inversion to perform poorly.

The availability of the D-Wave 2X [7] quantum annealing
computer naturally encourages comparisons with classical
approaches. For example, Vinci et. al. [16] compared D-
Wave performance on spin-glass problems against the classical
Hamze-Freitas-Selby algorithm [13], [14] and showed that
quantum annealing is 2− 3 orders of magnitude faster. How-
ever, by targeting spin glass problems that map directly onto
the sparsely connected D-Wave chimera, such comparisons do
not address the relative performance of quantum annealing for
the solution of general QUBO problems, particularly those
problems which involve dense connectivity. Here, we start
with a general QUBO problem inspired by a compressive
sensing [9], [10] approach to radiographic inference and
use embedding tools to map this problem onto the D-Wave
Chimera

In conclusion, we find that quantum annealing provides a
strategy for inferring the sparse set of binary coefficients used
in the object definition by finding good local minima of a non-
convex cost function which penalizes the differences between
the actual and reconstructed radiographs. Similar to what has
been reported for spin glass problems, the D-Wave 2X is found
to exhibit orders of magnitude better performance even on a

QUBO problem with dense connectivity that does not match
the D-Wave chimera. The D-Wave 2X yielded the lowest
energy solutions in a few seconds with all the synthesized
non-zero binary coefficients recovered. The D-Wave solution
remained robust after white noise was added to the radio-
graph, a manipulation that causes the closed-form inverse Abel
transform to perform poorly. Our results suggest an important
application domain based on sparse coding and compressive
sensing in which quantum annealing can rapidly find solutions
to NP-hard problems that pose considerable difficulties for
existing state-of-the-art solvers based on classical algorithms.
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